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Abstract 
This paper is concerned with a review of the size and scale effects involved in the prediction 
of strength of fibre-reinforced-plastic (FRP) composite materials and structures. The review 
covers the basic principles in the establishment of scaling laws and the application of the 
Buckingham-Pi theorem. An analysis of various theories used in categorising size effects, 
such as the weak link, extended weak link and fracture mechanics approaches, is presented. 
This is followed by an examination of the literature devoted to scaling issues in FRP 
composites. 
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1. Introduction 
The relatively recent introduction of FRP composite technology, together with the large 
range of materials used and being introduced, mean that a broad design base, such as that 
available for many metals, has not yet been compiled for FRP materials. Hence much testing 
of composite components has to be carried out either on full-scale prototypes, or, in order 
to save both time and expense, on small-scale models by using the principles of dimensional 
analysis. It follows therefore, that any discrepancies encountered whilst scaling from model 
to full size (i.e. any size effects) should be both identified and understood. Similarly, much of 
the design of composite components is based on material properties derived from small 
laboratory scale coupons. 

It has been thought for some time that a strength ‘size effect’ may exist for some 
composites, which is usually (but not exclusively) detrimental with increasing size. This is 
thought to be due to the increased probability of a larger specimen containing a flaw large 
enough to lead to failure. However, an accurate quantitative description of such effects, or 
even firm evidence of their existence, has proved elusive. These problems may be 
compounded by the fact that a separately manufactured specimen will not necessarily have 
the same properties as a comparable specimen cut from the full-scale structure. This latter 
effect is due more to the scale of production than to the actual size of the composite 
laminate considered. Hence it may be helpful to think of this as a ‘scale effect’ rather than a 
‘size effect’. 

The existing studies of this phenomenon have considered various different areas and 
approaches, all under the general heading of ‘Composites Size Effects’. The aims of this 
paper are two-fold; firstly to provide a thorough and structured summary of the terms and 
theories used in the literature, and then secondly to review this literature. This review will 
lead to the methodology used in, and provide the background to, an extensive study of ship-
building composites which uses a novel approach described in two companion papers [1, 2]. 

 



2. Size effects 
There are many texts concerning experimental modelling [3] the theory of models [4], and 
the field of dimensional analysis [5]. In order for the use of experimental scale model testing 
to be successful it is imperative that the unique relationship between the behaviour of the 
model and that of the prototype is well understood. It must be known that the model and 
prototype obey the same physical laws and that all the relevant features are correspondent 
if the model data are to be extrapolated to full scale. The unique relationship between 
model and prototype is broadly referred to as similarity and the conditions required to 
ensure similarity are developed using a technique known as dimensional analysis which is 
based on our concepts and conventions of measurements and observations. 

2.1. Dimensional analysis 
The use of dimensional analysis is directed towards finding pertinent non-dimensional 
combinations of variables for the physical system. These terms are subsequently employed 
in order to ascertain the required relationships between model and prototype. 

The basis of the mechanics of dimensional analysis is the use of non-dimensional groups 
or Pi terms after the ‘Pi-theorem’ as set out by Buckingham [6]. The use of such groups 
enables similarity conditions between model and prototype to be established. The choice of 
appropriate Pi terms requires an understanding of both the physical processes and the 
relevant variables of the system. Omission of any variables involved in the system processes 
will result in errors in the prediction of prototype behaviour from model experiments. 
Conversely, selection of unnecessary or uninvolved variables may not affect the validity of 
the model, but may entail unnecessary complexity, possibly obscuring the physical 
relevance of the non-dimensional groups developed. 

2.2. The theory of models 
Once a set of Pi terms has been identified the next step is to use them to give the 
relationship between model and prototype behavior. It is convenient to consider two types 
of Pi terms, the test parameter and the design parameters or conditions. The test parameter 
is the Pi term containing the variable which is to be predicted and the design conditions are 
those containing the other system variables. As is normal engineering practice the system or 
prototype is expressed as a relationship between the parameter to be predicted and those 
which can be measured; 

      1 2 3 4p p p p SpF , , , ,  ( 1 ) 

where Π1p is the test parameter and Π2p to ΠSp are the design conditions pertaining to the 
prototype. 

Since Eq. (1) is entirely general it also applies to the model system since the latter is a 
function of the same variables; 

      1 2 3 4m m m m SmF , , , ,  ( 2 ) 

where the subscript m denotes model. 

 



Therefore the relationship between prototype and model may be expressed as; 
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Take the case where that all the test parameters are equivalent between prototype and 
model; 

i.e.  ip im
 

( 4 ) 

Since the function F is the same for model and prototype, it follows that; 

  1 1p m  ( 5 ) 

In this case the model and prototype are said to be completely similar. 

2.3. Distorted models and size effects 
If one or more of the Pi terms differ between model and prototype scales then the model 
would be said to be distorted with respect to this Pi term. If this term is purely geometrical 
the model would be said to be geometrically distorted and this would be readily apparent 
from the fact that the model would be a different shape to the prototype. Geometric 
distortion is the most common in static structure modelling but others include loading and 
material properties distortion. In this case some recourse must be taken to reconstitute the 
relationship between model and prototype. Usually additional knowledge in the form of an 
equation not used in the dimensional analysis performs this task. 

Once the analysis has been completed the prototype behaviour may be predicted from the 
experiments performed on the model. It is often the case that on construction of the 
prototype these predictions are found to be inaccurate to some degree. This is often 
referred as a ‘scale effect’, since the scale of the system appears to affect its behaviour. 
However this is simply a name given to an unknown phenomenon which has not been 
included in the initial appraisal of the system and hence the scaling relationship used. In 
other words the model is still distorted since we have not allowed for all the features of the 
system considered David and Nolle [3] suggest some reasons for such differences between 
model and prototype behaviour; 

1. Some effect may be insignificant at prototype size but significant at model size or 
vice versa. 

2. There may be a change in behaviour. 
3. Measurement or construction accuracy may be different for different scales. 
4. The material properties are affected by scale. This may be due to differences in 

fabrication methods, for example. 
 
From a design point of view such scale effects may be allowed for using previous model and 
prototype scale experimentation experience to give engineering factors. A more scientific 
approach is to carry out experiments on a range of scaled systems with the view to use the 
results to formulate and verify a theoretical explanation for the model distortion. 

 



3. Analysis of strength size effects 
3.1. Weakest-link theory 
Statistical strength theory or statistical weakest link theory has formed the basis of 
conventional brittle fracture study for many years. The concept of the weakest link was first 
used by Pierce [7] to investigate the strengths of long lengths of cotton yarns by considering 
them to made up of shorter lengths linked together. Shortly after this study, Tucker 
[8] applied the same concept to concrete. Weibull [9] made great advances in the subject, 
giving his name to the most widely used distribution used in weakest link theory and 
showing that the theory could be applied to many brittle materials. 

Weakest link theory is based on the assumption that the material is made up of smaller 
elements linked together and that failure of the material as a whole occurs when any one of 
these elements or ‘links’ fail. The probability of failure of each link subjected to a stress 
increase from 0 to σ is described by the distribution function F(σ). The probability of survival 
of that link is then given by; 

    S F  1  ( 6 ) 

It is also assumed that F(σ) describes the strength distribution for every element and that 
each F(σ) is an independent randomly distributed variable. The probability of survival 
of n elements in series is then given by; 

     S Fn
n

  1  ( 7 ) 

Hence the probability of failure of a chain of n elements is given by: 

     F Fn
n

   1 1  ( 8 ) 

The function F(σ) may be described generally as, 

     F     1 exp  ( 9 ) 

Eq. (8) forms the basis of statistical weakest link theory. A specific form of ϕ(σ) was put 
forward by Weibull [9] and is still used widely today. This function has become known as the 
‘Weibull distribution’ and is given by: 
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Where σu is the threshold stress below which failure does not occur and σ0 and m are called 
the scale parameter and the shape parameter, respectively.  

This form is termed the three parameter distribution. For the strength of a material 
subjected to an increasing load from zero to σ there is zero chance of failure only when 
there is no applied load. Hence, σu is usually taken to be zero and the two parameter form is 
used. This leads to a probability of failure of n elements in series of; 



 
 F nn

m

 


  




















1
0

exp  
( 11 ) 

Considering a volume of material comprising of small elemental volumes, δV, instead of a 
chain of ‘links’ gives; 
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For tensile testing the stress σ is uniformly distributed through the material volume. Initially 
assuming this simple case gives; 
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In order to use this equation to describe experimental data it is convenient to express Eq. 
(13) in a linear form. Rearranging and taking logarithms twice gives; 
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Hence a plot of ln(σ) versus the left hand side of this equation for N replications of an 
experimental strength test for a given volume of material, V, will give a linear relationship if 
the material strength variability is described by the Weibull distribution. From the slope 
and y-axis intercept of this line both the shape and scale parameter respectively may be 
estimated. Varying the volume of material translates the line vertically. 

The calculation of FV(σ) for a set of experimentally obtained stresses, σ, can be carried out 
using a statistical approximation technique as described by Weibull [9]. Here the N values 
of σ obtained for a given volume, V, are arranged in ascending order, and for the ith value; 

  F i
NV  
 1

 
( 15 ) 

Alternatively, the shape parameter m may be approximated from the coefficient of variation 
(C.V.) of the data set, as stated by Hitchon and Phillips [10]: 
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Considering the more general case of a varying stress field through the material volume, Eq. 
(12) becomes: 
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( 17 ) 

 



On integration we can express this generally as: 
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where Ks is a factor dependent upon the stress distribution and σr is a reference stress at a 
specific point in the material. For tensile tests the stress distribution is uniform and 
hence Ks has a value of one. The derivation of Ks for four-point bending with a load span of 
one third of the support span results in [11]; 

 

 
K m

m
s 





2
1 2  

( 19 ) 

If the strength distribution of a material is described by Weibull theory then it is possible to 
correlate the strengths of specimens or components of differing size. An assumption is 
made that the values of the shape and scale parameters m and σ0 are material constants, 
independent of the size of the specimen and its stress field. Considering Eq. (13) for the 
same probability of failure for two specimens with identical stress distributions gives; 

 



2

1

1

2

1










V
V

m
 

( 20 ) 

This equation directly links strength to volume and hence quantifies the size effect. A 
logarithmic plot of stress versus volume gives a straight line relationship of slope −1/m, as 
shown in Fig. 1. 
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Fig. 1. Logarithmic plot of a strength size effect. 

We can extend this approach to include the effect of differing stress distributions by 
using Eq. (18) to give: 
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This equation again quantifies the size effect but also includes the influence of differing 
stress distributions. 

For anisotropic materials such as fibre composites both the strength distributions and the 
effects of flaws in differing directions may not be the same. Integrating Eq. (12) over length 
instead of volume, for example gives; 
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Similarly for breadth and depth: 
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where m1, mb and md are not necessarily equal. 

The theory as applied to anisotropic materials is referred to as modified weakest link theory. 

3.2. Extensions of weakest-link theory for composite materials 
Weakest-link theory accurately describes the failure of brittle materials. However, although 
most composite materials fail at very low tensile strains, final failure generally occurs after 
some damage accumulation. There is much available literature suggesting the constituent 
fibres of many composites do behave as brittle materials [12, 13]. This is one of the 
assumptions of the theory first put forward Rosen [14] and Zweben and Rosen [15], but 
damage accumulation is also taken into account. Further work by Harlow and Phoenix 
[16] and Smith [17] gave comprehensive exact mathematical solutions. However, these 
more complicated models also require the estimation of often difficult to measure 
parameters. Also, other sources of variation are likely to be comparatively large and so the 
simpler and more easily interpreted theory of Zweben and Rosen is outlined here, as 
described in more detail by Batdorf [18]. The bundle of fibres model, as first suggested by 
Daniels [19], is in fact an extension of simple Weibull theory. A chain of elements is again 
considered, but in this case the elements are assumed to consist of many fibres. 

Daniels assumed that for a loose bundle of fibres when an individual fibre failed, the bundle 
as a whole did not fail due to redistribution of the load equally among the other fibres. In a 
similar manner to Daniels [19], Zweben and Rosen [15] hypothesised that when the first of 
these fibres failed the composite as a whole did not fail, because of load transfer by the 
matrix. However, they supposed that the load previously taken by the broken fibre is now 
transferred via the matrix only to the adjacent fibres, around the break and then back to the 
original fibre. A consequence of this shear transfer is that, for a certain length either side of 



the break, the failed fibre carries less load whilst those adjacent carry more. This is shown 
in Fig. 2. 

 
Fig. 2. Illustration of fibre load sharing. 

The length over which this shear transfer occurs is known as the ‘ineffective length’ denoted 
by δ. Despite the fact that the adjacent fibres now carry more load, since δ is small the 
probability of a critical flaw occurring in this length is also small and hence failure is unlikely. 
Also the excess load is shared amongst all neighbouring fibres and so the load increase is 
not large. 

This type of isolated fibre breakage is termed a ‘singlet’ and as the load is increased more of 
these will appear. As the load is further increased it becomes more likely that the over 
stressed parts of the adjacent fibres should themselves fail. When this occurs there are two 
adjacent broken fibres and this is termed a ‘doublet’. Still further loading will give rise to 
more singlets and doublets and then ‘triplets’. This continues until a critical ‘multiplet’ 
occurs and the process becomes unstable, resulting in the failure of the composite as a 
whole. 

Considering the two parameter Weibull distribution: 
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For the fracture of a fibre this may be interpreted as the number of defects unable to 
sustain a stress σ per unit length of fibre. Hence the number of singlets formed in N fibres of 
length L is: 
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This assumes that the ineffective length δ is much less than the fibre length L. A further 
assumption is that N is large so that the number of flaws at the edges of the composite and 
hence not surrounded by other fibres is small. 
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In order to simplify the analysis the ineffective length for a singlet (1 is replaced by a 
conceptual ‘effective length’ λ1. Each fibre adjacent to a singlet has a maximum increase in 
stress in the plane of the break. The effective length is that which, when subjected to this 
maximum stress, has the same probability of failure as the ineffective length subjected to 
the actual varying stress. 

The total length of overloaded fibres surrounding the Q1 singlets is hence Q1n1λ1 where n1 is 
the number of fibres around each singlet. Defining the ratio of σMax to σ as C1 gives the 
number of failures expected in this length as: 
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This is the number of singlets converted to doublets at stress σ and may be generalised to 
higher order multiplets: 
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This is not generally equal to the number of i-plets present at load σ since some will have 
been converted to higher order multiplets, the actual number is hence: 

 q Q Qi i i  1  ( 29 ) 

It can be seen from Eq. (28) that a logarithmic plot of Qi against σ for the ith multiplet will 
yield a linear graph of slope mi. This is illustrated for i=1 to 4 in Fig. 3. 
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Fig. 3. Logarithmic plot of the bundle of fibres model. 

From Eqs. (26) to (28) it is apparent that the number of multiplets is proportional to NL, 
which in a uniform unidirectional composite, is proportional to the composite volume, V. 
Hence a change in V translates the lines in Fig. 3 vertically, changing the values of the 
intercepts with the ln(σ) axis. This relationship may be represented on a logarithmic plot of 



failure stress against NL, as shown in Fig. 4. This plot is analogous to that for simple Weibull 
theory (see Fig. 1). 
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Fig. 4. Logarithmic plot of bundle of fibres model. 

The failure line is again the bold line, the dashed line indicating the situation shown in Fig. 
3 where failure occurs when the first quadruplet is formed. As the material volume is 
increased the failure stress again decreases, i.e. a strength size effect is present. The order 
of the critical multiplet is seen to increase with composite volume. Also, the dependence of 
strength on volume decreases as larger amounts of material are considered. 

The example above is only an illustration, the exact form of the curve will change with the 
values of the parameters m, σ0, ni, λI and Ci. The predictions made using the model are thus 
highly dependent upon the estimation of these parameters. 

3.3. Linear elastic fracture mechanics 
For the simplest case of a crack of length 2a in an infinite plate subjected to a uniform 
stress σ, a linear elastic fracture mechanics (LEFM) approach [20] leads to the definition of 
the stress intensity factor, K. Failure of the plate occurs when this reaches a critical 
value, Kc giving a corresponding stress value σc: 

 K ac c    ( 30 ) 

This critical stress intensity factor is normally assumed to be a material property and is 
found experimentally by methods such as the tensile testing to destruction of a sample with 
a crack of known length. 

Since it is assumed that the crack propagates when the stress intensity factor reaches its 
critical value then it would appear to be pertinent to include it in the dimensional analysis of 
the system, and this leads to: 

    
l
1 2  ( 31 ) 

This equation states that failure occurs at the same value of the critical stress intensity 
factor for both model and prototype then the failure stress will scale as one over the square 



root of length if there is geometric similarity. Thus strength decreases with size and a size 
effect has been described. 

The system equation approach using Eq. (30) gives: 
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From this it is evident that if K is to remain constant and if Eq. (31) applies then the crack 
size, a, should scale as length. This would be expected from the condition of geometric 
similarity. However, this is a false assumption for most cases. For an advanced composite 
material, the critical crack or flaw is generally within the fibres. As is usually the case, if the 
same reinforcement is used for both model and prototype then the crack size is the same at 
both scales. This would also be true if the critical flaws were within the matrix phase, in the 
form of microcracks, for example. This point is further discussed in Section 4.4. 

4. Strength size effects literature review 
In his article entitled “Is There a Size Effect in Composites?” Zweben [21] stated that the 
question of the existence of a size effect in composites has been around since the 1960s. 
The fact that much work is still currently underway in the subject shows that conclusive 
evidence has not yet arisen to answer the question. 

4.1. Brittle materials size effects 
The weakest link theory has been used in the design of ceramics for some time and 
examples of the literature on this subject are numerous. Davis [22] gave an easily 
interpreted overview of the theories used and the mechanics of how to apply them. 

The strength size effect of a natural anisotropic fibrous composite, wood, is analogous to 
that for man-made fibre reinforced plastics. This problem has also been approached using 
Weibull weakest link theory as early as 1966 by Bohannan [23]. Simple Weibull theory was 
applied to the decrease in strength with volume by Madsen and Nielson [24]. This theory 
was extended to allow for the anisotropic nature of wood using a modified Weibull theory in 
which the effects of length, width and thickness are considered separately [23, 25, 26]. 

4.2. Brittle fibres size effects 
The consensus of work concerning individual filaments and bundles of fibres [12, 21, 27, 
28] does indicate that there is a decrease in strength as length is increased, and also as the 
number of filaments increases. However, the description of these effects by the statistical 
theories used is by no means conclusive. For example, Moreton [12] describes only as ‘fair’ 
the fit of the weakest link model he used to describe the strength of carbon fibres. 

Further extensions of these theories appear to have increased not only the complexity of 
the statistics involved but also of the interpretation of the results obtained. Watson and 
Smith [29] used the carbon fibre data of Bader and Priest [28] to fit more complicated 
models, but still admitted that the theory is not apparently satisfied for bundles. Despite 
their mathematically elaborate model, phrases such as ‘...but this is just a guess and major 
source of uncertainty’ describing the estimation of the relevant parameters raises doubts as 
to the need for such detailed models. Padgett et al. [13] used a further development of 
Weibull theory only to obtain ‘reasonable’ fits to the same data. The mathematical 



simulations of Karbhari and Wilkins [30] used experimental data to give estimates of certain 
parameters but there is no experimental verification of their predictions. This pattern of 
more and more complicated statistical analyses with either very little experimental back-up 
or inconclusive correlation is also seen in the work concerning aramid fibres [31, 32]. 

4.3. Statistical strength theories 
Various statistical aspects of the fracture of composites were discussed by Kelly and 
MacMillan [33]. Batdorf [18] provided an excellent overview of both simple weakest link and 
bundles of fibres models for fibrous composites. He took the view that, although the 
simplifications made by Zweben and Rosen [15] lead to a non-exact mathematical solution, 
the increase in accuracy achieved by such an exact solution is small when compared to the 
errors inherent in estimating the model parameters such as the ineffective length. He also 
recognised the advantages given to engineers of a model easily reconcilable with physical 
quantities over abstract statistical models. Exact mathematical results for the chain of 
bundles model were first obtained by Harlow and Phoenix [16, 34] and later, Smith 
[17] developed asymptotic approximations. 

Not all the literature concerning the statistical fracture theories as applied to aligned 
composites attempts to verify the models derived and, as for fibres, conclusive evidence 
either for or against the model is not gained from the experimental data. The models appear 
to give adequate qualitative predictions but are quantitatively inaccurate. Model 
simplifications (such as fibre arrangement, load sharing and diameter assumptions) as well 
as the difficulties in estimating parameters (for example ineffective length and stress 
concentration factor) have been suggested as possible reasons for this. Another supposition 
is that the theory does not allow for the fact that sources of variation, other than those due 
to flaws, are inevitably present (see Section 3.3). Rosen [14] verified qualitatively the 
progressive and random nature of fibre fractures before final failure of a single layer glass 
laminate by experimental observation. Zweben and Rosen [15] analysed Rosen’s strength 
data and found that their theory predictions correlated well with the data for small 
specimens. However, they questioned whether these results could be extrapolated to larger 
volumes such as those found in structures. Bartdorf and Ghaffarian [35] re-analysed the 
data of Bullock [36] and found that their model fitted only when the estimate of the 
ineffective length parameter was unrealistically large. Bader and Priest [28] were unable to 
reach any firm conclusions about the agreement with theory for data from single carbon 
fibres and impregnated bundles. In order to simplify the problem, Beyerlein and Phoenix 
[37] considered carbon fibres and simple micro-composites of four fibres in an epoxy matrix. 
However this approach, together with the inclusion of some measure of the variations in 
fibre diameter, still gave only a partial fit to the experimental data. Good predictions 
between the strengths of carbon fibres, minitows and tows were achieved by Batdorf 
[18] but the variation of strengths was much greater than expected. He suggested that this 
is due to sources of variation other than those due to flaws. 

4.4. Carbon composites size effects 
Most of the studies of composite size effects has been carried out in the aerospace field 
using pre-preg carbon/epoxy laminates and mainly use simple Weibull theory to explain any 
size effects seen. 



A frequently quoted paper is that by Bullock [36] which described a study of two 
graphite/epoxy systems. Simple Weibull analysis was used to compare the strengths of 
single strand tows, tensile coupons and flexural three point bending specimens. The effect 
of volume between the similarly stressed tows and coupons was predicted very accurately 
by a Weibull theory that uses both volumes and stresses based on the fibres alone. Similarly, 
the theory predicts very well the differences in strength observed between the tensile and 
flexural coupons of equal volume by considering the different stress distributions present. 
Similar values for the Weibull shape parameter were obtained for tows, tensile coupons and 
flexural specimens (for 36, 27 and 13 specimens, respectively) for one of the material 
systems, and an average value of 24 was taken. However, for the other system, more 
variability in the strengths was observed and a value of 18 was taken for the shape 
parameter. Bullock suggested that sufficient specimens must be tested in order to estimate 
adequately the specific value of the shape parameter for the material considered. 

The effect of fabrication route on the strength of CFRP was investigated by Hitchon and 
Phillips [10] who considered two types of both fibre and matrix. The specimens produced 
using pultrusion, hand lay-up, filament winding and pre-preg techniques were most 
conveniently tested using different test methods. Tensile, hoop-burst and three point 
flexural tests were carried out. Here Weibull theory only partially explained strength 
changes; tensile and hoop-burst results were well explained but flexural and tensile 
strengths were not reconciled. Variations in the shape parameter m (between 10.3 and 
38.4) were cited as a possible reason for this; the Weibull analysis being carried out using an 
average value of 20. Changes in material properties between fabrication routes and failure 
mode differences between test methods were thought to be responsible for the observed 
variation in the shape parameter. Also the small number of specimens tested (between four 
and eight) was noted with reference to the confidence in the parameter estimates obtained. 
This statistical aspect was further investigated in the second part of the study which sought 
to resolve these problems by comparing the strengths of different sizes of filament wound 
hoop-burst specimens. No significant strength decrease ( p<0.01) was seen, but it was noted 
that, for the small number of observations made, the size effects expected for the strength 
variability seen would be too small to discern. Hitchon and Phillips [10] postulated that 
Weibull theory may be more applicable when volume is changed through stressed fibre 
length rather than composite cross-sectional area, and they concluded that further 
investigation was required. 

Tensile and flexural beam column tests of carbon/epoxy were the subject of a series of 
studies by Kellas and Morton [38], Jackson et al. [39] and Jackson and Kellas [40]. Various 
lay-ups were tested, initially using ply-level scaling, and a size effect noted for flexural and 
tensile testing which depended on the lay-up. No effect of size is seen on the initial stiffness. 
Both Weibull and LEFM theories were applied, the former giving better, but variable, 
correlation between theory and experiment. No attempt was made to estimate the Weibull 
shape parameter from the variation of the data, instead this was estimated using Eq. (33) 
and the strengths of two specimen sizes: 
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where σUlt is the specimen strength, V is the specimen volume, m is the shape parameter 
and subscripts 1 and 2 indicate the two different sizes of specimen considered. 

Large variations of m (7.22 to 156 for the tensile tests, and 8.5 to 18.3 for the flexural) were 
observed across the different lay-ups. The fracture mechanics model was thought to be 
inappropriate due to the complex damage modes exhibited by the composite laminates. 
Failure mode transitions were noted as the size increased for both tensile and flexural 
coupons, and again this was dependent on lay-up. Sub-ply level scaling, whereby the 
number of fibres in each laminate is varied, was then applied to the same flexural beam 
column arrangement. This was found not to alleviate the strength scale effect and, in fact, 
the effect was amplified compared with the earlier ply-level scaled specimens. 

Wisnom [41] observed a size effect for unidirectional carbon/epoxy for four-point bending 
and pinned-end buckling tests. A change in failure mode from tensile to compressive was 
seen with increasing size. Wisnom postulated that a greater size effect in compression than 
in tension caused the larger specimens to have lower compressive strengths than tensile 
strengths. Importantly, it was noted that the cure used heated plates for thin specimens, 
whereas an autoclave was used for the thicker specimens. Although visual inspection 
showed no difference in material quality, the different manufacture processes could provide 
a possible explanation for the size effects seen. A Weibull shape parameter of 25 was 
estimated from Wisnom’s data using Eq. (33), but less scatter in the results than this 
suggests was seen. In order to explain this behaviour, a model of the composite between 
the extremes of a brittle solid and a loose bundle of fibres was postulated. This model 
predicted a size effect more dependent upon length than upon the other dimensions. Hence 
a second study of specimens of the same cross section, but with varying lengths using three-
point bending tests was completed Wisnom [42]. Here a Weibull model with both volume 
and length terms was fitted to the data and found to account for the lower than expected 
variation. Wisnom draws attention to the caution required when comparing relatively small 
differences in strength based on observations from a small number of specimen tests. In 
further papers Wisnom [43, 44] reports a size effect for interlaminar tensile and shear 
strength measured using curved beam four point bending and short beam shear tests, 
respectively. 

Grothause et al. [45] compared three and four point bending of carbon-fibre-reinforced 
plastic using Weibull theory. The stress concentrations at the loading rollers were found to 
influence failure mode, with steel rollers producing compressive failure and plastic rollers 
giving tensile failure. By considering tensile and compressive failures separately, Weibull 
theory was used to explain strength differences. 

An investigation into scale effects for fatigue by Chou and Croman [46] also concerns 
graphite/epoxy. Here in-line holes drilled in the specimens were used to represent the ‘links’ 
in weakest link theory. Application of Weibull theory then allowed reasonable predictions to 
be made. Grimes [47] reviewed selected literature on the static and fatigue scale effects of 
graphite epoxy bonded and bolted joints. 

Some work has been carried out on the scaling of the impact of carbon reinforced plastics 
[48–52]. The scaling of CFRP notched strength has also been studied by Shahib et al. [53]. 

Publications which consider the effects of scaling at a microstructural level include a study 
of defects by Wang [54] and studies into the relationships between ply thickness and 



damage accumulation by Crossman and Wang [55], Crossman et al. [56] and Lagace et al. 
[57]. 

4.5. Glass composites size effects 
There is less information available concerning glass reinforced plastic composites, which are 
of far greater interest to the marine engineer. Camponeschi [58, 59] evaluated the effect of 
size on compression strength of carbon and glass composites for large naval structures. He 
postulated that although strength was observed to decrease with thickness, this could be 
attributed to fixture restraint effects. A size effect for the strength of glass fibres was found 
by Kies [60] but he stated that, with good design, a correspondingly large size effect is not 
seen in the strength of filament wound pressure vessels. He also states that, “The rather 
large discrepancy between virgin filament strength and strength in structure should not be 
regarded as due to fiber degradation but rather associated with unequal tensioning 
limitations due to resin, surface finishes, and design factors not yet optimised.” Elliot and 
Sumpter [61] considered a material common in the marine industry, woven roving 
glass/polyester. In this case no change in compression strength with size was found. 
However, a change was found for tensile tests, and again this was attributed to fixture 
effects. Interestingly, compressive strength was seen to vary through the thickness of the 
parent laminate from which the specimens were cut. The behaviour of woven roving 
glass/polyester was characterised in tension, compression, shear and flexure by Zhou and 
Davies [62, 63]. LEFM and simple Weibull theory were used to explain strength variations 
with size. The latter method was found to give better predictions of experimental results, 
although the lack of statistical analysis of small differences in strength obtained from small 
numbers of observations does not instil confidence in the conclusions proffered. 

Crowther and Starkey [64] found a size effect in the fatigue of unidirectional glass reinforced 
epoxy and used Weibull statistics to explain this. They recognised that, “The success of this 
will depend on how sensitive fatigue life is to the difference in the manufacturing routes 
used to make small specimens and large components.” 

4.6. Effects of ‘scale’ 
One reason for the concentration of the literature on size effects due purely to the amount 
of material could be that most of the work has been carried out in the aerospace field using 
pre-preg carbon/epoxy laminates. Here the material is fairly consistent and perhaps the 
effects of manufacturing are thought to be unimportant. 

The significance of any size effects due to the scale of production rather than solely due to 
the size of the artefact are mentioned only briefly in very little of the literature on 
composites size effects. This issue is most comprehensively discussed by Zweben [21, 
65] and Batdorf [18]. Most of the literature on the subject appears to be more interested in 
obtaining rigorous mathematical and empirical solutions to the theories. Other type of 
possible explanations for size effects, principally those arising from fabrication and 
production considerations, are mentioned only rarely. Zweben [21, 65] recognised them as 
important but then ignores them. Hitchon and Phillips [10] suggested that the reason for 
differences between their data and that of Bullock [36] is due to differences in the materials 
used and also note quality differences in batches of their own material, despite efforts to 
ensure that the manufacturing processes were identical. Crowther and Starkey 
[64] suggested that manufacturing differences may be important and that it would be useful 



to investigate these effects. A rare example of a study of the real life problem of scaling 
coupon data to full scale testing is the rather qualitative and specific work of Lowe and 
Satterly [66] concerning filament-wound glass/polyester spars for wind turbine blades. A 
more quality-control orientated paper by Karbhari et al. [67] suggested that the effect of the 
volume of production and material processing should be considered as well as geometric 
scale, but no specific details are mentioned. Scaling effects in nature were discussed by 
Wilkins [68] that might be relevant to composites, but again no direct comparisons are 
made. 

5. Discussion 
The statistical fracture theories used are well developed mathematically and are usually 
based upon the weakest link theory also known as ‘Weibull theory’. This theory assumes 
brittle behaviour and has been found to satisfactorily describe the size effects seen for the 
strength of both ceramics and single constituent fibres of composite materials (such as 
those of carbon and glass). For the failure of bundles of fibres the simple fracture theories 
have been developed to give reasonable descriptions of the progressive failure mechanisms 
encountered. 

However, when fibre reinforced plastic composites are considered the agreement between 
experiment and theory is by no means clear, and the literature is often contradictory. The 
theories are generally derived assuming simple tensile failure of unidirectional composites, 
but have been applied where more complex failure modes of laminates occurs. In some 
cases the theories have only been presented as a mathematical exercise without any 
reference to experimental data. The complexity of some of the models becomes redundant 
when their parameters become difficult or impossible to estimate, and gross 
approximations are required. Also, the advantages of further refining the mathematical 
model must be balanced against the assumptions made in the derivation of the theory 
(especially concerning the uniformity of the microstructure). 

The LEFM model, although appearing in a number of publications, does not appear to 
describe the experimental data to which it is applied at all well. One reason for this could be 
that the dimensional analysis which produces this theory requires that any cracks in the 
composite are geometrically scaled with the specimen or component. Since the strength of 
the fibre reinforced plastic composites concerned is mainly fibre controlled, this is not 
plausible. There is no reason why the flaws in a larger laminate should be any different from 
those in a smaller one, if the same reinforcement is used in both. The theory also does not 
allow for the complex failure modes often seen in FRPs. 

The studies in the literature, as a group, do not follow any particular pattern. The testing of 
composites is a complex subject on its own even before the issue of size effects is raised. 
Often the phrase, “composites size effects” is used to cover the entire spectrum of material 
properties, test methods, test parameters and material systems considered in all of the 
literature. For example, one study may consider the tensile testing of hand laid-up, 0°/90° 
carbon/epoxy laminates [38], whereas another may concern four-point flexural testing of 
pre-preg unidirectional carbon/epoxy [41]. Moreover, comparisons have been made within 
individual studies between composites manufactured using completely different processes 
such as filament winding, pultrusion, hand lay-up and pre-preg [10]. Considering these 
points, it is perhaps not unexpected that the results are often contradictory. It is neither 



effective nor efficient to approach a problem involving a large number of variables by 
considering each in turn and in isolation. 

Despite the lack of a general consensus of opinion on the nature of strength size effects for 
fibre reinforced plastics (or even on their existence), a number of authors have come to the 
conclusion that the phenomenon exists and that statistical strength theory may be used to 
quantify it. Further, even though this theory is statistical in nature, very little statistical 
analyses of the results and trends are reported. In much of the literature, the authors simply 
fit the model to the data to obtain the appropriate parameters and then uses this to predict 
specific data values. This may appear, on face value, to be acceptable. However, there is a 
degree of scatter in the data and some indication of the confidence with which these 
predictions are made should be given. Hitchon and Phillips [10] do carry out some statistical 
significance tests but come to the conclusion that, for the small strength variations seen, the 
number of samples considered is too small to enable these effects to be distinguished from 
the experimental variability. This is also pointed out by Wisnom, [42] and some average 
values are based on around five or even one observation [38, 63], with no indication as to 
how this affects the confidence with which the predictions may be accepted. 

Hitchon and Phillips [10] also highlight the fact that the statistical theories do not allow for 
variations in composite quality owing to factors such production-related issues. The 
literature appears to have lost sight of the original impetus for the study of size effects—the 
problem of scaling up test data to full-scale. If such effects as manufacturing/processing 
variables, quality and volume of production could be important, then why have they been 
ignored? This could be because many of the studies were concerned with high quality, 
aerospace type composites. The work that was not appear to have directly translated the 
methods already used for such materials to those with much more variable mechanical 
properties. In fact, Hitchon and Phillips [10] do try to explore this issue, but do so in a non-
systematic way and hence are unable to interpret their results easily. It is important that 
such sources of variation should be investigated. 

The methodology used to examine the problem should recognise the multiplicity of 
variables involved in composites testing (and the consequential need to examine the 
influence of as many of the most significant ones as possible) and the fact that even coupon 
testing is resource intensive. A very simple, economical yet comprehensive approach is to 
use statistical factorial experiments to generate the test scheme. The scheme will first need 
to be applied to readily comparable results in existing literature, such as flexural and tensile 
tests on UD coupons in both glass and carbon (see Sutherland et al. [1]). Then, after a 
selection of the important fabrication variables, it will be appropriate to apply the technique 
to hand laid-up WR laminates such as those used in shipbuilding (see Sutherland et al. [2]). 

6. Closure 
Dimensional analysis and the theory of models is used to explain what is meant by the term 
‘size effect’ as applied to the properties of a structural material. The mathematical models 
developed to describe this effect have been presented. The work carried out thus far to try 
to reconcile the reality of experimental observation with the theories postulated has been 
reviewed. An overview of the areas, results and shortcomings of this literature is presented. 

In summary, an investigation of possible composite materials strength size effects concerns 
both a large number of pertinent variables and experimental data subject to considerable 



scatter. This type of problem requires an efficient experimental programme and statistical 
analysis techniques in order to separately estimate the effects of each variable, and also to 
distinguish these effects from the random variation in the experimental data. The methods 
of statistically designed experimentation have been developed to benefit exactly this type of 
problem, hence it is advantageous to use them here and an introduction to this field is given 
in Sutherland et al. [1]. This new approach to the question of strength size effects for 
composite materials, was used in a comprehensive test program, see Sutherland et al. [1, 2]. 
In contrast to previous work which, in the main, dealt with high, quality pre-preg 
carbon/epoxy laminates for use in the aerospace industries, this study has focused on the 
much more variable, shipbuilding quality marine composites. 
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